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Abstract

Interpretability is a key issue when applying deep learning models to longitudinal brain MRIs. 

One way to address this issue is by visualizing the high-dimensional latent spaces generated by 

deep learning via self-organizing maps (SOM). SOM separates the latent space into clusters and 

then maps the cluster centers to a discrete (typically 2D) grid preserving the high-dimensional 

relationship between clusters. However, learning SOM in a high-dimensional latent space tends 

to be unstable, especially in a self-supervision setting. Furthermore, the learned SOM grid does 

not necessarily capture clinically interesting information, such as brain age. To resolve these 

issues, we propose the first self-supervised SOM approach that derives a high-dimensional, 

interpretable representation stratified by brain age solely based on longitudinal brain MRIs (i.e., 

without demographic or cognitive information). Called Longitudinally-consistent Self-Organized 

Representation learning (LSOR), the method is stable during training as it relies on soft clustering 

(vs. the hard cluster assignments used by existing SOM). Furthermore, our approach generates a 

latent space stratified according to brain age by aligning trajectories inferred from longitudinal 

MRIs to the reference vector associated with the corresponding SOM cluster. When applied 

to longitudinal MRIs of the Alzheimer’s Disease Neuroimaging Initiative (ADNI, N = 632), 

LSOR generates an interpretable latent space and achieves comparable or higher accuracy than 

the state-of-the-art representations with respect to the downstream tasks of classification (static 

vs. progressive mild cognitive impairment) and regression (determining ADAS-Cog score of 

all subjects). The code is available at https://github.com/ouyangjiahong/longitudinal-som-single-

modality.

1 Introduction

The interpretability of deep learning models is especially a concern for applications related 

to human health, such as analyzing longitudinal brain MRIs. To avoid interpretation during 

** corresponding author.
*co-founder, equity Subtle Medical

HHS Public Access
Author manuscript
Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2023 
November 13.

Published in final edited form as:
Med Image Comput Comput Assist Interv. 2023 October ; 14220: 279–289. 
doi:10.1007/978-3-031-43907-0_27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/ouyangjiahong/longitudinal-som-single-modality
https://github.com/ouyangjiahong/longitudinal-som-single-modality


post-hoc analysis [6, 14], some methods strive for an interpretable latent representation 

[9]. One example is self-organizing maps (SOM) [5], which cluster the latent space so 

that the SOM representations (i.e., the ‘representatives of the clusters) can be arranged 

in a discrete (typically 2D) grid while preserving high-dimensional relationships between 

clusters. Embedded in unsupervised deep learning models, SOMs have been used to 

generate interpretable representations of low-resolution natural images [3,8].

Intriguing as it sounds, we found their application to (longitudinal) 3D brain MRIs unstable 

during training and resulted in uninformative SOMs. These models get stuck in local minima 

so that only a few SOM representations are updated during backpropagation. The issue has 

been less severe in prior applications [3,8] as their corresponding latent space is of much 

lower dimension than the task at hand, which requires a high dimension latent space so 

that it can accurately encode the fine-grained anatomical details in brain MRIs[17,12]. To 

ensure all SOM representations can be updated during backpropagation, we propose a soft 

weighing scheme that not only updates the closest SOM representation for a given MRI 

but also updates all other SOM representations based on their distance to the closest SOM 

representation [3,8]. Moreover, our model relies on a stop-gradient operator [16], which sets 

the gradient of the latent representation to zero so that it only focuses on updating the SOM 

representations. It is especially crucial at the beginning of the training when the (randomly 

initialized) SOM representations are not good representatives of their clusters. Finally, the 

latent representations of the MRIs are updated via a commitment loss, which encourages 

the latent representation of an MRI sample to be close to its nearest SOM representation. In 

practice, these three components ensure stability during the self-supervised training of the 

SOM on high-dimensional latent spaces.

To generate SOMs informative to neuroscientists, we extend SOMs to the longitudinal 

setting such that the latent space and corresponding SOM grid encode brain aging. 

Inspired by [12], we encode pairs of MRIs from the same longitudinal sequence (i.e., 

same subject) as a trajectory and encourage the latent space to be a smooth trajectory 

(vector) field. We enforce smoothness by computing for each SOM cluster a reference 

trajectory, which represents the average aging of that cluster with respect to the training 

set. The reference trajectories are updated by the exponential moving average (EMA) 

such that, in each iteration, it aggregates the average trajectory of a cluster with respect 

to the corresponding training batch (i.e., batch-wise average trajectory). In doing so, the 

model ensures longitudinal consistency as the (subject-specific) trajectories of a cluster are 

maximally aligned with the reference trajectory of that cluster.

Named Longitudinally-consistent Self-Organized) Representation learning (LSOR), we 

evaluate our method on a longitudinal T1-weighted MRI dataset of 632 subjects from 

ADNI to encode the brain aging of Normal Controls (NC) and patients diagnosed with 

static Mild Cognitive Impairment (sMCI), progressive Mild Cognitive Impairment (pMCI), 

and Alzheimer’s Disease (AD). LSOR clusters the latent representations of all MRIs into 

32SOM representations. The resulting 4-by-8 SOM grid is organized by both chronological 

age and cognitive measures that are indicators of brain age. Note, such an organization 

solely relies on longitudinal MRIs, i.e., without using any tabular data such as age, 

cognitive measure, or diagnosis. To visualize aging effects on the grid, we compute 
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(post-hoc) a 2D similarity grid for each MRI that stores the similarity scores between 

the latent representation of that MRI and all SOM representations. As the SOM grid is 

an encoding of brain aging, the similarity grid indicates the likelihood of placing the 

MRI within the “spectrum” of aging. Given all MRIs of a longitudinal scan, the change 

across the corresponding similarity grids over time represents the brain aging process of 

that individual. Furthermore, we infer brain aging on a group-level by first computing the 

average similarity grid for an age group and then visualizing the difference of those average 

similarity grids across age groups. With respect to the downstream tasks of classification 

(sMCI vs. pMCI) and regression (i.e., estimating the Alzheimer’s Disease Assessment 

Scale–Cognitive Subscale (ADAS-Cog) on all subjects), our latent representations of the 

MRIs is associated with comparable or higher accuracy scores than representations learned 

by other state-of-the-art self-supervised methods.

2 Method

As shown in Fig. 1, the longitudinal 3D MRIs of a subject are encoded as a series of 

trajectories (blue vectors) in the latent space. Following [12,17], we consider a pair of 

longitudinal MRIs (that corresponds to a blue vector) as a training sample. Specifically, 

let S denote the set of image pairs of the training cohort, where the MRIs xu and xv of a 

longitudinal pair xu, xv  are from the same subject and xv was acquired Δt years after xu. 

For simplicity, × refers to u or v when a function is separately applied to both time points. 

The MRIs are then mapped to the latent space by an encoder F , i.e., z× : = F x× . On the 

latent space, the trajectory of the pair is denoted as Δz : = zv − zu /Δt, which represents 

morphological changes. Finally, decoder H reconstructs the input MRI x× from the latent 

representation z×, i.e., x× : = H z× . Next, we describe LSOR, which generates interpretable 

SOM representations, and the post-hoc analysis for deriving similarity grids.

2.1 LSOR

Following [3,8], SOM representations are organized in a Nr by Nc grid (denoted as SOM 

grid) G = gi, j i = 1, j = 1
Nr, Nc , where gi, j denotes the SOM representation on the i-th row and j-th 

column. This easy-to-visualize grid preserves the high-dimensional relationships between 

the clusters as shown in by the orange lines in Fig. 1. Given the latent representation z×, 

its closest SOM representation is denoted as gϵ×, where ϵ× : = argmin i, j ∥ z× − gi, j ∥2 is its 2D 

grid index in G and ∥ ⋅ ∥2 is the Euclidean norm. This SOM representation is also used 

to reconstruct the input MRI by the decoder, i.e., xg
× = H gϵ× . To do so, the reconstruction 

loss encourages both the latent representation z× and its closet SOM representation gϵ× to be 

descriptive of the input MRI x×, i.e.,

Lrecon: = E xu, xv S ∑
× ∈ x, v

x× − x×
2
2
+ x× − xg

×
2
2 , (1)

where E defines the expected value. The remainder describes the three novel components of 

our SOM representation.
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Explicitly regularizing closeness.—Though Lrecon implicitly encourages close proximity 

between z× and gϵ×, it does not inherently optimize gϵ× as z× is not differentiable with 

respect to gϵ×. Therefore, we introduce an additional ‘commitment’ loss explicitly promoting 

closeness between them:

Lcommit : = E xu, xv ∼ S ∥ zu − gϵu ∥2
2

+ ∥ zv − gϵv ∥2
2

.

Soft Weighting Scheme.—In addition to update z×’s closest SOM representation gϵ×, we 

also update all SOM representations gi, j by introducing a soft weighting scheme as proposed 

in [10]. Specifically, we design a weight wi, j
×  to regularize how much gi, j should be updated 

with respect to z× based on its proximity to the grid location ϵ× of gϵ×, i.e.,

wi, j
× : = δ e− ∥ ϵ× − (i, j) ∥1

2

2τ , (2)

where δ(w) : = w
∑i, j wi, j

 ensures that the scale of weights is constant during training and 

τ > 0 is a scaling hyperparameter. Now, we design the following loss Lsom so that SOM 

representations close to ϵ× on the grid are also close to z× in the latent space (measured by 

the Euclidean distance ‖z× − gi, j‖2):

Lsom: = E xu, xv S ∑
gi, j G

(wi, j
u ⋅ zu − gi, j 2

2 + wi, j
v ⋅ zv − gi, j 2

2) . (3)

To improve robustness, we make two more changes to Eq. 3. First, we account for SOM 

representations transitioning from random initialization to becoming meaningful cluster 

centers that preserve the high-dimensional relationships within the 2D SOM grid. We do so 

by decreasing τ in Eq. 2 with each iteration so that the weights gradually concentrate on 

SOM representations closer to gϵ× as training proceeds: τ(t) : = Nr ⋅ Nc ⋅ τmax
τmin
τmax

t/T
 with τmin

being the minimum and τmax the maximum standard deviation in the Gaussian kernel, and t
represents the current and T  the maximum iteration.

The second change to Eq. 3 is to apply the stop-gradient operator sg ⋅  [16] to z×, which 

sets the gradients of z× to 0 during the backward pass. The stop-gradient operator prevents 

the undesirable scenario where z× is pulled towards a naive solution, i.e., different MRI 

samples are mapped to the same weighted average of all image representations. This risk 

of deriving the naive solution is especially high in the early stages of the training when the 

SOM representations are randomly initialized and may not accurately represent the clusters.

Longitudinal Consistency Regularization.—We derive a SOM grid related to brain 

aging by generating an age-stratified latent space. Specifically, the latent space is defined 

by a smooth trajectory field (Fig. 1, blue box) characterizing the morphological changes 
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associated with brain aging. The smoothness is based on the assumption that MRIs 

with similar appearances (close latent representations on the latent space) should have 

similar trajectories. It is enforced by modeling the similarity between each subject-specific 

trajectory Δz with a reference trajectory that represents the average trajectory of the cluster. 

Specifically, Δgi, j is the reference trajectory (Fig. 1, green arrow) associated with gi, j then the 

reference trajectories of all clusters GΔ = Δgi, j i = 1, j = 1
Nr, Nc  represent the average aging of SOM 

clusters with respect to the training set. As all subject-specific trajectories are iteratively 

updated during the training, it is computationally infeasible to keep track of GΔ on the whole 

training set. We instead propose to compute the exponential moving average (EMA) (Fig. 

1, black box), which iteratively aggregates the average trajectory with respect to a training 

batch to GΔ:

Δgi, j

Δℎi, j t = 0
Δgi, j t > 0 and Ωi, j = 0
α ⋅ Δgi, j + 1 − α ⋅ Δℎi, j t > 0 and Ωi, j > 0

with Δℎi, j : = 1
Ωi, j k = 1

Nbs

1 ϵk
u = i, j ⋅ Δzk and Ωi, j : =

k = 1

Nbs

1 ϵk
u = i, j .

α is the EMA keep rate, k denotes the index of the sample pair, Nbs symbolizes the batch 

size, 1 ⋅  is the indicator function, and Ωi, j  denotes the number of sample pairs with 

ϵu = i, j  within a batch. Then in each iteration, Δℎi, j (Fig. 1, purple arrow) represents 

the batch-wise average of subject-specific trajectories for sample pairs with ϵu = i, j . By 

iteratively updating GΔ, GΔ then approximate the average trajectories derived from the 

entire training set. Lastly, inspired by [12,11], the longitudinal consistency regularization 

is formulated as

Ldir : = E xu, xv ∼ S 1 − cos θ Δz, sg Δgϵu ,

where θ ⋅ , ⋅  denotes the angle between two vectors. Since Δg is optimized by EMA, the 

stop-gradient operator is again incorporated to only compute the gradient with respect to Δz
in Ldir.

Objective function.—The complete objective function is the weighted combination of the 

prior losses with weighing parameters λcommit, λsom, and λdir:

L : = Lrecon + λcommit ⋅ Lcommit + λsom ⋅ Lsom + λdir ⋅ Ldir

The objective function encourages a smooth trajectory field of aging on the latent space 

while maintaining interpretable SOM representations for analyzing brain age in a pure 

self-supervised fashion.

2.2 SOM Similarity Grid

During inference, a (2D) similarity grid ρ is computed by the closeness between the latent 

representation z of an MRI sample and the SOM representations:
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ρ : = softmax(− ∥ z − G ∥2
2 /γ) with γ : = std( ∥ z − G ∥ 2

2)

std denotes the standard deviation of the distance between z to all SOM representations. As 

the SOM grid is learned to be associated with brain age (e.g., represents aging from left to 

right), the similarity grid essentially encodes a “likelihood function” of the brain age in z. 

Given all MRIs of a longitudinal scan, the change across the corresponding similarity grids 

over time represents the brain aging process of that individual. Furthermore, brain aging on 

the group-level is captured by first computing the average similarity grid for an age group 

and then visualizing the difference of those average similarity grids across age groups.

3 Experiments

3.1 Experimental Setting

Dataset.—We evaluated the proposed method on all 632 longitudinal T1-weighted MRIs 

(at least two visits per subject, 2389 MRIs in total) from ADNI-1 [13]. The data set consists 

of 185 NC (age: 75.57 ± 5.06 years), 193 subjects diagnosed with sMCI (age: 75.63 ± 6.62 

years), 135 subjects diagnosed with pMCI (age: 75.91 ± 5.35 years), and 119 subjects with 

AD (age: 75.17 ± 7.57 years). There was no significant age difference between the NC and 

AD cohorts (p = 0.55, two-sample t-test) as well as the sMCI and pMCI cohorts (p = 0.75). 

All MRI images were preprocessed by a pipeline including denoising, bias field correction, 

skull stripping, affine registration to a template, re-scaling to 64 × 64 × 64 volume, and 

transforming image intensities to z-scores.

Implementation Details.—Let Ck denote a Convolution(kernel size of 3 × 3 × 3, 

Convk)-BatchNorm-LeakyReLU(slope of 0.2)-MaxPool(kernel size of 2) block with k filters, 

and CDk an Convolution-BatchNorm-LeakyReLU-Upsample block. The architecture was 

designed as C16-C32-C64-C16-Conv16-CD64-CD32-CD16-CD16-Conv1, which results in a 

latent space of 1024 dimensions. The training of SOM is difficult in this high-dimensional 

space with random initialization in practice, thus we first pre-trained the model with only 

Lrecon for 10 epochs and initialized the SOM representations by doing k-means of all training 

samples using this pre-trained model. Then, the network was further trained for 40 epochs 

with regularization weights set to λrecon = 1.0, λcommit = 0.5, λsom = 1.0, λdir = 0.2. Adam optimizer 

with learning rate of 5 × 10−4 and weight decay of 10−5 were used. τmin and τmax in Lsom were 

set as 0.1 and 1.0 respectively. An EMA keep rate of α = 0.99 was used to update reference 

trajectories. A batch size Nbs = 64 and the SOM grid size Nr = 4, Nc = 8 were applied.

Evaluation.—We performed five-fold cross-validation (folds split based on subjects) using 

10% of the training subjects for validation. The training data was augmented by flipping 

brain hemispheres and random rotation and translation. To quantify the interpretability of 

the SOM grid, we correlated the coordinates of the SOM grid with quantitative measures 

related to brain age, e.g., chronological age, the percentage of subjects with severe cognitive 

decline, and Alzheimer’s Disease Assessment Scale–Cognitive Subscale (ADAS-Cog). We 

illustrated the interpretability with respect to brain aging by visualizing the changes in the 

SOM similarity maps over time. We further visualized the trajectory vector field along 
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with SOM representations by projecting the 1024-dimensional representations to the first 

two principal components of SOM representations. Lastly, we quantitatively evaluated the 

quality of the representations by applying them to the downstream tasks of classifying sMCI 

vs. pMCI and ADAS-Cog prediction. We measured the classification accuracy via Balanced 

accuracy (BACC) and Area Under Curve (AUC) and the prediction accuracy via Coefficient 

of Determination (R2) and root-mean-square error (RMSE). The classifier and predictor 

were multi-layer perceptrons containing two fully connected layers of dimensions 1024 

and 64 with a LeakyReLU activation. We compared the accuracy metrics to models using 

the same architecture with encoders pre-trained by other representation learning methods, 

including unsupervised methods (AE, VAE [4]), self-supervised method (SimCLR [1]), 

longitudinal self-supervised method (LSSL [17]), and longitudinal neighborhood embedding 

(LNE [12]). All comparing methods used the same experimental setup (e.g., encoder-

decoder, learning rate, batch size, epochs, etc), and the method-specific hyperparameters 

followed [12].

3.2 Results

Interpretability of SOM representations.—Fig. 2 shows the stratification of brain age 

over the SOM grid G. For each grid entry, we show the average value of chronological age 

(Fig. 2(a)), % of AD & pMCI (Fig. 2(b)), and ADAS-Cog score (Fig. 2(c)) over samples 

of that cluster. We observed a trend of older brain age (yellow) from the upper left towards 

the lower right, corresponding to older chronological age and worse cognitive status. The 

SOM grid index strongly correlated with these three factors (distance correlation of 0.92, 

0.94, and 0.91 respectively). Fig. 2(d) shows the average brain over 20 input images with 

representations that are closest to each SOM representation of the last row of the grid (see 

Supplement Fig. S1 for all rows). From left to right the ventricles are enlarging and the brain 

is atrophying, which is a hallmark for brain aging effects.

Interpretability of similarity grid.—Visualizing the average similarity grid ρ of the NC 

and AD at each age range in Fig. 3, we observed that higher similarity (yellow) gradually 

shifts towards the right with age in both NC and AD (see Supplemental Fig. S2 for sMCI 

and pMCI cohorts). However, the shift is faster for AD, which aligns with AD literature 

reporting that AD is linked to accelerated brain aging[15]. Furthermore, the subject-level 

aging effects shown in Supplemental Fig. S3 reveal that the proposed visualization could 

capture subtle morphological changes caused by brain aging.

Interpretability of trajectory vector field.—Fig. 4 plots the PCA projections of the 

latent space in 2D, which shows a smooth trajectory field (gray arrows) and reference 

trajectories GΔ (blue arrows) representing brain aging. This projection also preserved the 

2D grid structure (orange) of the SOM representations suggesting that aging was the most 

important variation in the latent space.

Downstream Tasks.—To evaluate the quality of the learned representations, we froze 

encoders trained by each method without fine-tuning and utilized their representations for 

the downstream tasks (Table 1). On the task of sMCI vs. pMCI classification (Table 1 

(left)), the proposed method achieved a BACC of 69.8 and an AUC of 72.4, a comparable 
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accuracy (p > 0.05, DeLong’s test) with LSSL [17] and LNE [12], two state-of-the-art 

self-supervised methods on this task. On the ADAS-Cog score regression task, the proposed 

method obtained the best accuracy with an R2 of 0.32 and an RMSE of 6.31. It is worth 

mentioning that an accurate prediction of the ADAS-Cog score is very challenging due to 

its large range (between 0 and 70) and its subjectiveness resulting in large variability across 

exams [2] so that even larger RMSEs have been reported for this task [7]. Furthermore, our 

representations were learned in an unsupervised manner so that further fine-tuning of the 

encoder would improve the prediction accuracy.

4 Conclusion

In this work, we proposed LSOR, the first SOM-based learning framework for longitudinal 

MRIs that is self-supervised and interpretable. By incorporating a soft SOM regularization, 

the training of the SOM was stable in the high-dimensional latent space of MRIs. By 

regularizing the latent space based on longitudinal consistency as defined by longitudinal 

MRIs, the latent space formed a smooth trajectory field capturing brain aging as shown 

by the resulting SOM grid. The interpretability of the representations was confirmed by 

the correlation between the SOM grid and cognitive measures, and the SOM similarity 

map. When evaluated on downstream tasks sMCI vs. pMCI classification and ADAS-Cog 

prediction, LSOR was comparable to or better than representations learned from other 

state-of-the-art self- and un-supervised methods. In conclusion, LSOR is able to generate 

a latent space with high interpretability regarding brain age purely based on MRIs, and 

valuable representations for downstream tasks.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1: 
Overview of the latent space derived from LSOR. All trajectories Δz  form a trajectory field 

(blue box) modeling brain aging. SOM representations in G (orange star) are organized as a 

2D grid (orange grid). As shown in the black box, reference trajectories ΔG (collection of all 

Δg, green arrow) are iteratively updated by EMA using the aggregated trajectory Δℎ (purple 

arrow) across all trajectories of the corresponding SOM cluster within a training batch.
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Fig. 2: 
The color at each SOM representation encodes the average value of (a) chronological age, 

(b) % of AD and pMCI, and (c) ADAS-Cog score across the training samples of that cluster; 

(d) Confined to the last row of the grid, the average MRI of 20 latent representations closest 

to the corresponding SOM representation.
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Fig. 3: 
The average similarity grid ρ over subjects of a specific age and diagnosis (NC vs AD). Each 

grid encodes the likelihood of the average brain age of the corresponding sub-cohort. Cog 

denotes the average ADAS-Cog score.
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Fig. 4: 
2D PCA of the LSOR’s latent space. Light gray arrows represent Δz. The orange 

grid represents the relationships between SOM representations and associated reference 

trajectory ΔG (blue arrow).
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Table 1:

Supervised downstream tasks using the learned representations z (without fine-tuning the encoder). LSOR 

achieved comparable or higher accuracy scores than other state-of-theart self- and un-supervised methods.

Methods
sMCI/pMCI ADAS-Cog

BACC AUC R2 RMSE

AE 62.6 65.4 0.26 6.98

VAE [4] 61.3 64.8 0.23 7.17

SimCLR [1] 63.3 66.3 0.26 6.79

LSSL [15] 69.4 71.8 0.29 6.49

LNE [12] 70.6 72.1 0.30 6.46

LSOR 69.8 72.4 0.32 6.31
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